Crate crypto_box
source · [−]Expand description
Usage
use crypto_box::{
aead::{Aead, AeadCore, OsRng},
SalsaBox, PublicKey, SecretKey
};
//
// Encryption
//
// Generate a random secret key.
// NOTE: The secret key bytes can be accessed by calling `secret_key.as_bytes()`
let alice_secret_key = SecretKey::generate(&mut OsRng);
// Get the public key for the secret key we just generated
let alice_public_key_bytes = alice_secret_key.public_key().as_bytes().clone();
// Obtain your recipient's public key.
let bob_public_key = PublicKey::from([
0xe8, 0x98, 0xc, 0x86, 0xe0, 0x32, 0xf1, 0xeb,
0x29, 0x75, 0x5, 0x2e, 0x8d, 0x65, 0xbd, 0xdd,
0x15, 0xc3, 0xb5, 0x96, 0x41, 0x17, 0x4e, 0xc9,
0x67, 0x8a, 0x53, 0x78, 0x9d, 0x92, 0xc7, 0x54,
]);
// Create a `SalsaBox` by performing Diffie-Hellman key agreement between
// the two keys.
let alice_box = SalsaBox::new(&bob_public_key, &alice_secret_key);
// Get a random nonce to encrypt the message under
let nonce = SalsaBox::generate_nonce(&mut OsRng);
// Message to encrypt
let plaintext = b"Top secret message we're encrypting";
// Encrypt the message using the box
let ciphertext = alice_box.encrypt(&nonce, &plaintext[..])?;
//
// Decryption
//
// Either side can encrypt or decrypt messages under the Diffie-Hellman key
// they agree upon. The example below shows Bob's side.
let bob_secret_key = SecretKey::from([
0xb5, 0x81, 0xfb, 0x5a, 0xe1, 0x82, 0xa1, 0x6f,
0x60, 0x3f, 0x39, 0x27, 0xd, 0x4e, 0x3b, 0x95,
0xbc, 0x0, 0x83, 0x10, 0xb7, 0x27, 0xa1, 0x1d,
0xd4, 0xe7, 0x84, 0xa0, 0x4, 0x4d, 0x46, 0x1b
]);
// Deserialize Alice's public key from bytes
let alice_public_key = PublicKey::from(alice_public_key_bytes);
// Bob can compute the same `SalsaBox` as Alice by performing the
// key agreement operation.
let bob_box = SalsaBox::new(&alice_public_key, &bob_secret_key);
// Decrypt the message, using the same randomly generated nonce
let decrypted_plaintext = bob_box.decrypt(&nonce, &ciphertext[..])?;
assert_eq!(&plaintext[..], &decrypted_plaintext[..]);
Choosing ChaChaBox
vs SalsaBox
The crypto_box
construction was originally specified using SalsaBox
.
However, the newer ChaChaBox
construction is also available, which
provides marginally better security and additional features such as
additional associated data:
use crypto_box::{
aead::{Aead, AeadCore, Payload, OsRng},
ChaChaBox, PublicKey, SecretKey
};
let alice_secret_key = SecretKey::generate(&mut OsRng);
let alice_public_key_bytes = alice_secret_key.public_key().as_bytes().clone();
let bob_public_key = PublicKey::from([
0xe8, 0x98, 0xc, 0x86, 0xe0, 0x32, 0xf1, 0xeb,
0x29, 0x75, 0x5, 0x2e, 0x8d, 0x65, 0xbd, 0xdd,
0x15, 0xc3, 0xb5, 0x96, 0x41, 0x17, 0x4e, 0xc9,
0x67, 0x8a, 0x53, 0x78, 0x9d, 0x92, 0xc7, 0x54,
]);
let alice_box = ChaChaBox::new(&bob_public_key, &alice_secret_key);
let nonce = ChaChaBox::generate_nonce(&mut OsRng);
// Message to encrypt
let plaintext = b"Top secret message we're encrypting".as_ref();
let associated_data = b"customized associated data here".as_ref();
// Encrypt the message using the box
let ciphertext = alice_box.encrypt(&nonce, Payload {
msg: plaintext, // your message to encrypt
aad: associated_data, // not encrypted, but authenticated in tag
}).unwrap();
//
// Decryption
//
let bob_secret_key = SecretKey::from([
0xb5, 0x81, 0xfb, 0x5a, 0xe1, 0x82, 0xa1, 0x6f,
0x60, 0x3f, 0x39, 0x27, 0xd, 0x4e, 0x3b, 0x95,
0xbc, 0x0, 0x83, 0x10, 0xb7, 0x27, 0xa1, 0x1d,
0xd4, 0xe7, 0x84, 0xa0, 0x4, 0x4d, 0x46, 0x1b
]);
let alice_public_key = PublicKey::from(alice_public_key_bytes);
let bob_box = ChaChaBox::new(&alice_public_key, &bob_secret_key);
// Decrypt the message, using the same randomly generated nonce
let decrypted_plaintext = bob_box.decrypt(&nonce, Payload {
msg: &ciphertext,
aad: associated_data, // tag authentication will fail if associated data doesn't match, which fails the decryption
}).unwrap();
assert_eq!(&plaintext[..], &decrypted_plaintext[..]);
In-place Usage (eliminates alloc
requirement)
This crate has an optional alloc
feature which can be disabled in e.g.
microcontroller environments that don’t have a heap.
The AeadInPlace::encrypt_in_place
and AeadInPlace::decrypt_in_place
methods accept any type that impls the aead::Buffer
trait which
contains the plaintext for encryption or ciphertext for decryption.
Note that if you enable the heapless
feature of this crate,
you will receive an impl of aead::Buffer
for heapless::Vec
(re-exported from the aead
crate as aead::heapless::Vec
),
which can then be passed as the buffer
parameter to the in-place encrypt
and decrypt methods.
A heapless
usage example can be found in the documentation for the
xsalsa20poly1305
crate:
Re-exports
Structs
crypto_box
public key.crypto_box
secret key.Constants
crypto_box
public or secret key in bytes.Functions
seal
crypto_box_seal
function from libsodium “sealed boxes”.seal
crypto_box_seal_open
function from libsodium “sealed boxes”.